Parallel and Perpendicular Lines
 Geometry
 Chapter 3

Geometry 3

- This Slideshow was developed to accompany the textbook
- Larson Geometry
- By Larson, R., Boswell, L., Kanold, T. D., \& Stiff, L. - 2011 Holt McDougal
- Some examples and diagrams are taken from the textbook.

3.1 Identify Pairs of Lines and Angles
 Parallel Lines
 Lines that do NOT intersect and are coplanar
 Lines go in the same direction

Skew Lines
Lines that do NOT intersect and are on different planes
Lines go in different directions

3.1 Identify Pairs of Lines and Angles

- Name the lines through point H that appear skew to $C D$
- Name the lines containing point H that appear parallel to $\overleftrightarrow{C D}$
- Name a plane that is parallel to plane CDE and contains point H

AH, EH

GH

BGH

3.1 Identify Pairs of Lines and Angles

- In a plane, two lines are either
- Parallel
- Intersect

Parallel Postulate

If there is a line and a point not on the line, then there is exactly one line through the point parallel to the given line.

Perpendicular Postulate

If there is a line and a point not on the line, then there is exactly one line through the point perpendicular to the given line.

3.1 Identify Pairs of Lines and Angles
 Transversal

Line that intersects two coplanar lines
Interior \angle
angles that are between the lines
$\angle 2, \angle 3, \angle 5, \angle 6$
Exterior \angle
angles that are outside of the lines
$\angle 1, \angle 4, \angle 7, \angle 8$

3.1 Identify Pairs of Lines and Angles

Alternate interior angles
interior angles on opposite sides of the transversal
$\angle 2$ and $\angle 5, \angle 3$ and $\angle 6$

Alternate exterior angles
exterior angles on opposite sides of the transversal
$\angle 1$ and $\angle 8, \angle 4$ and $\angle 7$

3.1 Identify Pairs of Lines and Angles

Consecutive interior angles
interior angles on the same side of the transversal
$\angle 2$ and $\angle 6, \angle 3$ and $\angle 5$

Corresponding angles
angles on the same location relative to the transversal
$\angle 1$ and $\angle 6, \angle 2$ and $\angle 7$,
$\angle 3$ and $\angle 8, \angle 4$ and $\angle 5$

3.1 Identify Pairs of Lines and Angles

- Classify the pair of numbered angles

150 \#4-42even, 45-49 all $=25$ total

Corresponding
Alternate Exterior
Alternate Interior

Answers and Quiz

- 3.1 Answers
-3.1 Quiz

3.2 Use Parallel Lines and

 Transversals- Draw parallel lines on a piece of notebook paper, then draw a transversal.
- Use the protractor to measure all the angles.
- What types of angles are congruent? - (corresponding, alt interior, alt exterior)
- How are consecutive interior angles related?
- (supplementary)

3.2 Use Parallel Lines and Transversals
 Corresponding Angles Postulate

If $2|\mid$ lines are cut by trans., then the corrs \angle are \cong
Alternate Interior Angles Theorem
If 2 || lines are cut by trans., then the alt int \angle are \cong
Alternate Exterior Angles Theorem
If 2 || lines are cut by trans., then the alt ext \angle are \cong
Consecutive Interior Angles Theorem
If $2 \|$ lines are cut by trans., then the cons int \angle are supp.

3.2 Use Parallel Lines and Transversals
 - If $\mathrm{m} \angle 1=105^{\circ}$, find $\mathrm{m} \angle 4, \mathrm{~m} \angle 5$, and $\mathrm{m} \angle 8$. Tell which postulate or theorem you use in each case

$$
\begin{aligned}
& \text { If } m \angle 3=68^{\circ} \text { and } m \angle 8=(2 x+4)^{\circ} \text {, } \\
& \text { what is the value of } x ?
\end{aligned}
$$

$\mathrm{m} \angle 4=105$; vertical angles are congruent
$\mathrm{m} \angle 5=105$; corresponding angles postulate
$\mathrm{m} \angle 8=105$; alt ext angles theorem
$\mathrm{m} \angle 3=\mathrm{m} \angle 2$
$\mathrm{m} \angle 8=\mathrm{m} \angle 5$
$\angle 2$ and $\angle 5$ are cons int angles and are supp
$\mathrm{m} \angle 2+\mathrm{m} \angle 5=180$
$m \angle 3+m \angle 8=180$
$68+2 x+4=180$
$2 x+72=180$
$2 x=108$
$x=54$

3.2 Use Parallel Lines and Transversals

- Prove that if 2 || lines are cut by a trans, then the ext angles on the same side of the trans are supp.
- Given: p || q
- Prove: $\angle 1$ and $\angle 2$ are supp.

Statements
Reasons

$\mathrm{p} \| \mathrm{q}$
$m \angle 1+m \angle 3=180$
$\angle 2 \cong \angle 3$
$\mathrm{m} \angle 2=\mathrm{m} \angle 3$
$\mathrm{m} \angle 1+\mathrm{m} \angle 2=180$
$\angle 1$ and $\angle 2$ are supp
(given)
(linear pair post)
(corrs angles post)
(def \cong)
(substitution)
(def supp)

3.2 Use Parallel Lines and Transversals
 - 157 \#2-32 even, 36-52 even $=25$ total
 - Extra Credit 160 \#2, $6=+2$

Answers and Quiz

- 3.2 Answers
-3.2 Quiz

3.3 Prove Lines are Parallel

Corresponding Angles Converse
If 2 lines are cut by trans. so the corrs \angle are \cong, then the lines are $\|$.

Alternate Interior Angles Converse

If 2 lines are cut by trans. so the alt int \angle are \cong, then the lines are $\|$.
Alternate Exterior Angles Converse
If 2 lines are cut by trans. so the alt ext \angle are \cong, then the lines are \|.
Consecutive Interior Angles Converse
If 2 lines are cut by trans. so the cons int \angle are supp., then the lines are $\|$.

3.3 Prove Lines are Parallel

- Is there enough information to conclude that $\mathrm{m} \| \mathrm{n}$?

- Can you prove that the lines are parallel? Explain.

$m \angle 1+m \angle 2=180^{\circ}$

Yes, corresponding angles will both be 75°

Yes, alt ext angles converse
Yes, corres angles converse
No, should be $\angle 1 \cong \angle 2$ by alt int angles converse

3.3 Prove Lines are Parallel

Transitive Property of Parallel Lines
If two lines are parallel to the same line, then they are parallel to each other.

- Paragraph proofs
- The proof is written in sentences.
- Still need to have the statements and reasons.

3.3 Prove Lines are Parallel

- Write a paragraph proof to prove that if 2 lines are cut by a trans. so that the alt int $\angle \mathrm{s}$ are \cong, then the lines are $\|$.
- Given: $\angle 4 \cong \angle 5$
- Prove: g || h

It is given that $\angle 4 \cong \angle 5$. By the vertical angle congruence theorem, $\angle 1 \cong \angle 4$. Then by the Transitive Property of Congruence, $\angle 1 \cong \angle 5$. So, by the Corresponding Angles Converse, g || h.

3.3 Prove Lines are Parallel

- If you use the diagram at the right to prove the Alternate Exterior Angles Converse, what GIVEN and PROVE statements would you use?

165 \#2-28 even, 34, 36, 40-54 even $=24$ total

Given: $\angle 1 \cong \angle 8$
Prove: j|| k

Answers and Quiz

- 3.3 Answers
-3.3 Quiz

3.4 Find and Use Slope of Lines

- Slope $=\frac{\text { rise }}{\text { run }}$
- $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

3.4 Find and Use Slope of Lines

- Positive Slope
- Rises
- Zero Slope Horizontal

Negative Slope - Falls

- No Slope (Undefined) Vertical

There's No Slope to stand on.

3.4 Find and Use Slope of Lines

- Find the slope of
- Line b
- Line c

Line $\mathrm{b}: \mathrm{m}=(4-0) /(6-4)=4 / 2=2$
Line c: $m=(4-4) /(6-0)=0 / 6=0$

3.4 Find and Use Slope of Lines

Slopes of Parallel Lines
In a coordinate plane, 2 nonvertical lines are parallel iff they have the same slope.
And, any 2 vertical lines are parallel.
$m_{1}=2 ; m_{2}=2$
Slopes of Perpendicular Lines
In a coordinate plane, 2 nonvertical lines are perpendicular iff the products of their slopes is -1 .
Or, Slopes are negative reciprocals.
And, horizontal lines are perpendicular to vertical lines
$m_{1}=2 ; m_{2}=-1 / 2$

3.4 Find and Use Slope of Lines

- Tell whether the lines are parallel, perpendicular, or neither.
- Line 1: through $(-2,8)$ and $(2,-4)$
- Line 2: through $(-5,1)$ and $(-2,2)$
- Line 1 : through ($-4,-2$) and (1,7)
- Line 2: through ($-1,-4$) and $(3,5)$

Line 1: $(-4-8) /(2-(-2)) \rightarrow-12 / 4 \rightarrow-3$
Line 2: $(2-1) /(-2-(-5)) \rightarrow 1 / 3$
Perpendicular
Line 1: $(7-(-2)) /(1-(-4)) \rightarrow 9 / 5$ Line 2: $(5-(-4)) /(3-(-1)) \rightarrow 9 / 4$
neither

3.4 Find and Use Slope of Lines

- Line q passes through the points $(0,0)$ and $(-4,5)$. Line t passes through the points $(0,0)$ and $(-10,7)$. Which line is steeper, q or t ?
- 175 \#4-30 even, $34,36,40,44,46,48=20$ total Extra Credit 178 \#2, $4=+2$

$$
\begin{aligned}
& m_{q}=(5-0) /(-4-0)=5 /-4=-5 / 4=-1.25 \\
& m_{t}=(7-0) /(-10-0)=7 /-10=-7 / 10=-0.7
\end{aligned}
$$

Line q is steeper

Answers and Quiz

- 3.4 Answers
-3.4 Quiz

3.5 Write and Graph Equations of

 Lines- Slope-intercept form of a line
- $y=m x+b$
- $m=$ slope
- $\mathrm{b}=\mathrm{y}$-intercept
- To graph in slope intercept form
- Plot the y-intercept
- Move from the y-int the slope to find a couple more points
- Connect the points with a line
3.5 Write and Graph Equations of Lines
- Graph
- $y=-2 x$
- $y=x-3$

				1		

3.5 Write and Graph Equations of

 Lines- To write equations of lines using slopeintercept form
- Find the slope
- Find the y-intercept
- It is given or,
- Plug the slope and a point into $y=m x+b$ and solve for b
- Write the equation of the line by plugging in m and b into $y=m x+b$
3.5 Write and Graph Equations of Lines
- Write an equation of the line in the aranh

		y	A				
		1		$(3,1)$			
		1					
				2		x	
			$(0,-1)$				

3.5 Write and Graph Equations of Lines

- Write an equation of the line that passes through $(-2,5)$ and $(1,2)$
3.5 Write and Graph Equations of Lines
- Write an equation of the line that passes through $(1,5)$ and is parallel to the line with the equation $y=3 x-5$.

3.5 Write and Graph Equations of Lines

- Standard Form
- $A x+B y=C$
- A, B, and C are integers
- To graph
- Find the x - and y -intercepts by letting the other variable $=0$
- Plot the two points
- Draw a line through the two points

> x-intercept:
$A x+B(0)=C$
$A x=C$
$x=C / A$
Y-intercept:
$\mathrm{A}(0)+\mathrm{By}=\mathrm{C}$
$B y=C$
$y=C / B$
3.5 Write and Graph Equations of

Lines

- Graph

$$
2 x+5 y=10
$$

Answers and Quiz

- 3.5 Answers
-3.5 Quiz
3.6 Prove Theorems About Perpendicular Lines
If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular.
If two lines are perpendicular, then they \uparrow intersect to form four right angles.
inter
If two sides of two adjacent angles are perpendicular, then the angles are
 complementary.

3.6 Prove Theorems About Perpendicular Lines

- Given that $\angle A B C \cong \angle A B D$, what can you conclude about $\angle 3$ and $\angle 4$?

3.6 Prove Theorems About Perpendicular Lines

- Prove that if two lines are perpendicular, then they intersect to form four right angles.
- Given: $\mathrm{a} \perp \mathrm{b}$
- Prove: $\angle 1, \angle 2, \angle 3, \angle 4$ are rt $\angle \mathrm{s}$.

Statements

Reasons

$a \perp b$
(given)
$\angle 1$ is rt angle (def \perp lines)
$\mathrm{m} \angle 1=90^{\circ}$
$m \angle 1+m \angle 2=180$
$90+m \angle 2=180$
$\mathrm{m} \angle 2=90$
$\angle 2$ is $r t$ angle (def $r t$ angle)
$\angle 3 \cong \angle 1, \angle 4 \cong \angle 2 \quad$ (vertical angles are \cong)
$\mathrm{m} \angle 3=\mathrm{m} \angle 1, \mathrm{~m} \angle 4=\mathrm{m} \angle 2$
$\mathrm{m} \angle 3=90, \mathrm{~m} \angle 4=90$
$\angle 3$ is $\mathrm{rt} \angle, \angle 4$ is $\mathrm{rt} \angle$
(def rt angle)
(linear pair postulate)
(substitution)
(subtraction)
($\mathrm{def} \cong$)
(substitution)
(def rt \angle)

3.6 Prove Theorems About Perpendicular Lines
 Perpendicular Transversal Theorem

If a trans. is \perp to 1 of 2 || lines, then it is \perp to the other.

Lines \perp to a Transversal Theorem
In a plane, if 2 lines are \perp to the same line, then they are || to each other.

Yes, lines perpendicular to transversal theorem

Yes, c || d by the lines \perp to trans theorem; $b \perp \mathrm{c}$ by the \perp trans theorem

3.6 Prove Theorems About Perpendicular Lines

Distance

From point to line: length of segment from point and \perp to line

Between two || lines: length of segment \perp to both lines

3.6 Prove Theorems About Perpendicular Lines

- What is the distance from point A to line d ?

- What is the distance from line c to line e?

Slope of line c=2(rise $=2$, run $=1)$
Slope of \perp line $=-1 / 2$
Follow slope from $A(-3,2)$ to line $c d$; intersection at $(1,0)$
Calculate distance $\sqrt{(1-(-3))^{2}+(0-2)^{2}}=\sqrt{4^{2}+(-2)^{2}}=\sqrt{20}=2 \sqrt{5}=4.47$ Point on line c: $(0,2)$
Follow slope from (0,2) to line e
Point of intersection (4, 0)
Distance $=\sqrt{(4-0)^{2}+(0-2)^{2}}=\sqrt{16+4}=\sqrt{20}=2 \sqrt{5}=4.47$

3.6 Prove Theorems About Perpendicular Lines

- 194 \#2-10 even, 14-26 even, 30-46 even = 21 total
- Extra Credit 197 \#2, $8=+2$

Answers and Quiz

- 3.6 Answers
-3.6 Quiz

3.Review

$$
\begin{aligned}
& 206 \# 1-25 \\
& =25 \text { total }
\end{aligned}
$$

3 CHAPTERTEST

