Parallel and Perpendicular Lines Geometry Chapter 3

Geometry 3

This Slideshow was developed to accompany the textbook

- Larson Geometry
- By Larson, R., Boswell, L., Kanold, T. D., & Stiff, L.
- 2011 Holt McDougal
- Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy <u>rwright@andrews.edu</u>

AH, EH

GH

BGH

Corresponding Alternate Exterior Alternate Interior

Answers and Quiz

- 3.1 Answers
- 3.1 Quiz

3.2 Use Parallel Lines and

Transversals

- Draw parallel lines on a piece of notebook paper, then draw a transversal.
- Use the protractor to measure all the angles.
- What types of angles are congruent?
 (corresponding, alt interior, alt exterior)
- How are consecutive interior angles related?
 (supplementary)

3.2 Use Parallel Lines and Transversals Corresponding Angles Postulate If 2 || lines are cut by trans., then the corrs ∠ are ≅ Alternate Interior Angles Theorem If 2 || lines are cut by trans., then the alt int ∠ are ≅ Alternate Exterior Angles Theorem If 2 || lines are cut by trans., then the alt ext ∠ are ≅ Consecutive Interior Angles Theorem If 2 || lines are cut by trans., then the cons int ∠ are supp.

 $m \angle 4 = 105$; vertical angles are congruent $m \angle 5 = 105$; corresponding angles postulate $m \angle 8 = 105$; alt ext angles theorem $m \angle 3 = m \angle 2$ $m \angle 8 = m \angle 5$ $(2 \text{ and } \sqrt{5} \text{ are constint angles and are summity})$

 $\angle 2$ and $\angle 5$ are cons int angles and are supp $m\angle 2 + m\angle 5 = 180$ $m\angle 3 + m\angle 8 = 180$ 68 + 2x + 4 = 180 2x + 72 = 180 2x = 108x = 54

p q
m∠1 + m∠3 = 180
$\angle 2 \cong \angle 3$
m∠2 = m∠3
m∠1 + m∠2 = 180
$\angle 1$ and $\angle 2$ are supp

(given) (linear pair post) (corrs angles post) (def ≅) (substitution) (def supp)

3.2 Use Parallel Lines and Transversals

- ▶ 157 #2-32 even, 36-52 even = 25 total
- *Extra Credit 160 #2, 6 = +2*

Answers and Quiz

- 3.2 Answers
- 3.2 Quiz

3.3 Prove Lines are Parallel Corresponding Angles Converse
If 2 lines are cut by trans. so the corrs \angle are \cong , then the lines are $ $.
Alternate Interior Angles Converse
If 2 lines are cut by trans. so the alt int \angle are \cong , then the lines are $ $.
Alternate Exterior Angles Converse
If 2 lines are cut by trans. so the alt ext \angle are \cong , then the lines are $ $.
Consecutive Interior Angles Converse
If 2 lines are cut by trans. so the cons int \angle are supp., then the lines are .

Yes, corresponding angles will both be 75°

Yes, alt ext angles converse

Yes, corres angles converse

No, should be $\angle 1 \cong \angle 2$ by alt int angles converse

<section-header><section-header><section-header><section-header><section-header>

It is given that $\angle 4 \cong \angle 5$. By the vertical angle congruence theorem, $\angle 1 \cong \angle 4$. Then by the Transitive Property of Congruence, $\angle 1 \cong \angle 5$. So, by the Corresponding Angles Converse, g || h.

Given: $\angle 1 \cong \angle 8$ Prove: j || k

Answers and Quiz

- 3.3 Answers
- 3.3 Quiz

Line b: m = (4 - 0)/(6 - 4) = 4/2 = 2Line c: m = (4 - 4)/(6 - 0) = 0 / 6 = 0

3.4 Find and Use Slope of Lines

Slopes of Parallel Lines

In a coordinate plane, 2 nonvertical lines are parallel iff they have the same slope.

And, any 2 vertical lines are parallel.

 $m_1 = 2; m_2 = 2$

Slopes of Perpendicular Lines

In a coordinate plane, 2 nonvertical lines are perpendicular iff the products of their slopes is -1.

Or, Slopes are negative reciprocals.

And, horizontal lines are perpendicular to vertical lines

 $m_1 = 2; m_2 = -\frac{1}{2}$

5.4 Find and Use Slope of LinesTell whether the lines are *parallel*, *perpendicular*, or *neither*. Line 1: through (-2, 8) and (2, -4) Line 2: through (-5, 1) and (-2, 2) Line 1: through (-4, -2) and (1, 7) Line 2: through (-1, -4) and (3, 5)

Line 1: $(-4 - 8)/(2 - (-2)) \rightarrow -12/4 \rightarrow -3$ Line 2: $(2 - 1)/(-2 - (-5)) \rightarrow 1/3$ Perpendicular

Line 1: $(7 - (-2))/(1 - (-4)) \rightarrow 9/5$ Line 2: $(5 - (-4))/(3 - (-1)) \rightarrow 9/4$ neither

 $m_q = (5 - 0)/(-4 - 0) = 5/-4 = -5/4 = -1.25$ $m_t = (7 - 0)/(-10 - 0) = 7/-10 = -7/10 = -0.7$ Line q is steeper

Answers and Quiz

- 3.4 Answers
- 3.4 Quiz

- Slope-intercept form of a line
 - $\circ y = mx + b$
 - m = slope
 - b = y-intercept

To graph in slope intercept form

- Plot the y-intercept
- Move from the y-int the slope to find a couple more points
- · Connect the points with a line

- To write equations of lines using slopeintercept form
 - Find the slope
 - Find the y-intercept
 - It is given or,
 - Plug the slope and a point into y = mx + b and solve for b
 - $\circ\,$ Write the equation of the line by plugging in m and b into $y=mx\,+\,b$

 Write an equation of the line that passes through (-2, 5) and (1, 2)

• Write an equation of the line that passes through (1, 5) and is parallel to the line with the equation y = 3x - 5.

- Standard Form
 - $\circ Ax + By = C$
 - A, B, and C are integers
- To graph
 - Find the x- and y-intercepts by letting the other variable = 0
 - Plot the two points
 - Draw a line through the two points

x-intercept: Ax + B(0) = C Ax = Cx = C/A

Y-intercept: A(0) + By = C By = Cy = C/B

Answers and Quiz

- 3.5 Answers
- 3.5 Quiz

a | b (given) $\angle 1$ is rt angle (def \perp lines)

m∠1 = 90° (def rt angle) $m \angle 1 + m \angle 2 = 180$ (linear pair postulate) $90 + m \angle 2 = 180$ (substitution) $m \angle 2 = 90$ (subtraction) $\angle 2$ is rt angle (def rt angle)

 $\angle 3 \cong \angle 1$, $\angle 4 \cong \angle 2$ $m \angle 3 = m \angle 1, m \angle 4 = m \angle 2$ m∠3 = 90, m∠4 = 90 $\angle 3$ is rt \angle , $\angle 4$ is rt \angle

(vertical angles are \cong)

(def ≅) (substitution) (def rt \angle)

Yes, lines perpendicular to transversal theorem

Yes, c || d by the lines \perp to trans theorem; b \perp c by the \perp trans theorem

Slope of line c = 2 (rise = 2, run = 1) Slope of \perp line = -1/2 Follow slope from A(-3, 2) to line cd; intersection at (1, 0) Calculate distance $\sqrt{(1 - (-3))^2 + (0 - 2)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20} = 2\sqrt{5} = 4.47$ Point on line c: (0, 2) Follow slope from (0, 2) to line e Point of intersection (4, 0) Distance = $\sqrt{(4 - 0)^2 + (0 - 2)^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5} = 4.47$

3.6 Prove Theorems About Perpendicular Lines

- 194 #2-10 even, 14-26 even, 30-46 even = 21 total
- *Extra Credit 197 #2, 8 = +2*

Answers and Quiz

- 3.6 Answers
- 3.6 Quiz

3.Review	CHAPTER TEST
JIKEVIEW	Classify the pairs of angles as corresponding, alternate interior, alternate exterior, or consecutive interior.
> 206 #1-25 = 25 total	1. ∠1 and ∠8 2. ∠2 and ∠6 3. ∠3 and ∠5 4. ∠4 and ∠5 8. ∠3 and ∠7 6. ∠3 and ∠6 Find the value of x. 7. 1. ∠1 and ∠8 2. ∠2 and ∠6 3. ∠3 and ∠6 Find the value of x. 7. 1. ∠1 and ∠5 8. ∠3 and ∠7 6. ∠3 and ∠6 Find the value of x. 7. 1. ∠1 and ∠5 8. ∠3 and ∠7 6. ∠3 and ∠6 Find the value of x. 7. 1. ∠1 and ∠5 8. ∠3 and ∠7 6. ∠3 and ∠6 Find the value of x. 7. 1. ∠1 and ∠5 8. ∠3 and ∠7 6. ∠3 and ∠6 Find the value of x. 7. 1. ∠1 and ∠5 8. ∠3 and ∠7 6. ∠3 and ∠6 Find the value of x. 7. 1. ∠1 and ∠6 7. 7. 1. ∠2 and ∠7 7. 1. ∠2 and ∠7 7. 1. ∠2 and ∠7 7. 1. ∠2 and ∠6 7. 7. 1. ∠2 and ∠7 7. 1. ∠2 and ∠7 7. 2. ∠2 and ∠7 7. 2. ∠2 and ∠7 7. 2. ∠2
	Find the value of x that makes $m \mid n$. 10. 11. 12. 12. 12. 13. 14. 15. 15. 16. 16. 17. 17. 17. 17. 18. 19. 19. 10. 10. 10. 10. 10. 10. 10. 10
	 (3, -i), (3, 4) (4, (2, 7), (-i, -3) (5, 5), (-6, 12) Write an equation of the line that passes through the given point P and has the given slope m.
	16. $P(-2, 4), m = 3$ 17. $P(7, 12), m = -0.2$ 18. $P(3, 5), m = -8$
	Write an equation of the line that passes through point <i>P</i> and is perpendicular to the line with the given equation.
	19. $P(1, 3), y = 2x - 1$ 20. $P(0, 2), y = -x + 3$ 21. $P(2, -3), x - y = 4$
	In Exercises 22-24, $\overline{AB} \perp \overline{BC}$. Find the value of x. 22. $\begin{array}{c} 22.\\ \\ \hline \\$
	23. RENTAL COSTS The graph at the right models the cost of renting a moving van. Write an equation of the line. Then find the cost of renting the van for a 100 mile trip.